Supplementary Technical Report for “Analyzing
Length-biased Data with Semiparametric Transformation

and Accelerated Failure Time Models”

1  Asymptotic Properties of o

Let a be the true value of the regression coefficient vector under the AFT model. We

impose the following regularity conditions for a rigorous justification of the asymptotic
properties of a:
(a) Z is a p x 1 vector of bounded covariates, not contained in a (p — 1)-
dimensional hyperplane;
(b) sup[t : Pr(V >t) > 0] > suplt : Pr(C >t) > 0] = ty, and
Pr(0=1) > 0;

n

oL Sc(u)du}?/{S2(t)Sy (t)}dSc (t) < oo;
E [{52(1ogy — ZTag)} / {w(Y)}]? < o0;

(f) Jo* D*(s)/ {S2(s)Sv (s)} dSc(s) < oo,
where D(t) = E[ (2) {521 (v > 5) [¥ Sc(u)du(log Y — ZTaO)} /{M(Y)}} .

NS B2
(c) Th = —lim, o {l S Q(ifv)g’,’fz)i } is nonsingular;

We can establish the consistency of @ under regularity conditions (a)-(c) as follows.

First, we can show that Ua(a) has a unique solution & since

T(a) = dUs(a)/da = — { Z at= }

is negative semi-definite. With probability one, the quantity n='U% (a)(ap — @) con-

verges to

q(2)2T2(ag — @) (ap — )
/Z ) dF(z).
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Then the consistency of & follows from the fact that the above limit is non-negative

and is zero if and only if & = ay.

The derivation of the weak convergence /n(&— ag) can be obtained by the Taylor
series expansion of U4(é&) and the weak convergence of n='/2U 4 (a). By Taylor series

expansion,

1 N *L o —l (') nd—ao (0)
%UA<a)_ﬁUA< 0) = ~Tn(@o)v/n( ) + 0p(1),

where T, (ap) is the first derivative of Ua(ap) and 1T, (a) converges in probability

to the Hessian matrix of the Ua(ayg), ['4. Using the uniform consistency of w(t) to

w(t), we have

00 S ) w00}

(1.1)
Following from a martingale integral representation for y/n(w(t) —w(t)) by Pepe and
Fleming (1989, 1991), we can re-express y/n(w(t) —w(t)) as a martingale integral via
integration by parts

i) -0y = w3 1] sc<u>du] D o)

ﬁw(ﬁi&?(m _ —mz/ tt £) + 0,(1) (1.2)

where h;(t) = I(t <Y;) [ft Se(u du] Jw(Y;), w(t) = Sc(t)Sy(t), Mp(t) = 1(Yy —
A <t, A =0) fo — Ay > u)dA.(u) is the martingale for the residual censoring

variable, and A.(u) is the corresponding cumulative hazard function. The above



martingale integral representation (1.2) implies that

(lo8Y; = =f0) w(y;) - wv)
i & 1 w(Y)

N logV; —zfao) 1 &y 1o py(t)dM;(t
= E;Q(Zz)éz%< A )ﬁ;/{) %—I-Op(l)

Note that as n — oo,

Therefore,

logV; — 2l 0o ,
1/2UA 010 Z Zz 5 Zz< O) + D(t)sz(t)
\/_ w(Y;) 0 (1)

Hence, under regularity conditions (d)-(f), n=*/2U4(ay) is asymptotically normally

distributed by the Central Limit Theorem. This, combined with an application of

Slutsky’s theorem, implies that \/n(& — ag) converges weakly to a normal distribu-

tion with mean zero and variance-covariance matrix FglE AF;‘l, in which ¥4 is the

asymptotic variance-covariance matrix of n=/2U4 (a).

2 Asymptotic Efficiency of Two Approaches un-

der AFT Model

Based on the joint distribution of (A,Y) and C' conditional on covariates Z,

{4850

- E{Mlz) I ny<y|Z=z>sc<y—a>%d dy}

(
= E{ﬁ/f fo(ylZ = z)(logy — ZTa)dy} = 0.
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Accordingly, an alternative asymptotic unbiased estimating equation for a can be

constructed as
" (logy; — 2] a)
Us(a) = Zi 5221 = ! :07 2.3
(@) = D a(a)iany o (2.3

where ¢ is a positive, scalar weight function. The estimating equation leads to a

closed-form solution for a,

big = { qA(Zi)(SiZiZiT } - Q(Z})(szzz IOgYi_

= YiSc(Yi — Ay) = YiSc(Yi — Ay)
Let ap be the true value of the regression coefficient vector. We can prove that
the estimating equation Ug(a) yields a unique and consistent estimator @g under
some regularity conditions. Moreover, /n(@s — ag) converges weakly to a normal
distribution with mean zero and variance-covariance matrix FglEngl, in which I'g
is the Hessian matrix of the Ug(ap) and g is the asymptotic variance-covariance
matrix of n=2Ug(ay).

In contrast, our proposed estimating equations U, (a) use an inverse of the integral

of the Kaplan-Meier estimator as the weight,

n

Uala) = ZQ(%)@%W = 0. (2.4)

=1

While the two estimating equations are both valid for large sample properties, an
interesting question is which estimating equation leads to a more efficient estimator
of a, and under what conditions. In this section, we study the difference between the

two asymptotic variance-covariance matrices if the censoring distribution is known,
Var(as) — Var(a) =T5'SsTy' — T84T,

where ¥g and ¥4 denote the variance-covariance matrices of n="/2Ug (o) and n=/2U 4 (ay)
respectively. Note that for any censoring distribution, the two Hessian matrices I'g

and I'4 are the same, since

s = E[E{%‘ZH:E{%}
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and
Z7T AV A
Ty = E [E{—( 0 ‘ZH E{—‘J( ) } .
w(Y w(Z)
It is then essential to compare the difference between the variance-covariance matrices
Mg and X 4. We first show that the covariance matrix of n=/2Ug(a) and n=/2U 4 (avp)

is equal to the variance-covariance matrix X 4,

Cov <n_%U5(Ozo), n_%UA(C“O)>

q(Z)2ZZTE 6(10gY B ZTaU>2 ‘Z
YSo(Y — A) [ Sc(t)dt

- p|UOZE [ [ o TSty — ) ool Z)dac]

= b

) —a) [ Sc(t)
B 0 2)2Z2Z%7 [ (logy — ZTao) -
- E{ 2es e <y|z>dy} N (25)

Because the variance-covariance matrix Var (n_% Us(ag) —n~2U, (a0)> is non-negative
definite, with equation (2.5) we can ensure that the following difference in variance-

covariance matrixes is always non-negative definite,

Yg—24 = Ys+X4—2Cov (n_%US(ao), n_%UA(a0)> = Var (n_%US(aO) — n_%UA(a0)> :

Therefore, the estimator obtained from Uyu(a) is found to be asymptotically more

efficient than that from Ug(a) under any censoring distribution.



